大家好,我是小生,我来为大家解答以上问题。梅涅劳斯定理的证明,梅涅劳斯定理很多人还不知道,现在让我们一起来看看吧!
1、梅涅劳斯定理 梅涅劳斯(Menelaus)定理是由古希腊数学家梅涅劳斯首先证明的。
2、它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。
3、 证明: 过点A作AG∥BC交DF的延长线于G, 则AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG。
4、 三式相乘得:AF/FB×BD/DC×CE/EA=AG/BD×BD/DC×DC/AG=1 它的逆定理也成立:若有三点F、D、E分别在的边AB、BC、CA或其延长线上,且满足(AF/FB)×(BD/DC)×(CE/EA)=1,则F、D、E三点共线。
5、利用这个逆定理,可以判断三点共线。
6、 另外,有很多人会觉得书写这个公式十分烦琐,不看书根本记不住,下面从别人转来一些方法帮助书写 为了说明问题,并给大家一个深刻印象,我们假定图中的A、B、C、D、E、F是六个旅游景点,各景点之间有公路相连。
7、我们乘直升机飞到这些景点的上空,然后选择其中的任意一个景点降落。
8、我们换乘汽车沿公路去每一个景点游玩,最后回到出发点,直升机就停在那里等待我们回去。
9、 我们不必考虑怎样走路程最短,只要求必须“游历”了所有的景点。
10、只“路过”而不停留观赏的景点,不能算是“游历”。
11、 例如直升机降落在A点,我们从A点出发,“游历”了其它五个字母所代表的景点后,最终还要回到出发点A。
12、 另外还有一个要求,就是同一直线上的三个景点,必须连续游过之后,才能变更到其它直线上的景点。
13、 从A点出发的旅游方案共有四种,下面逐一说明: 方案 ① ——从A经过B(不停留)到F(停留),再返回B(停留),再到D(停留),之后经过B(不停留)到C(停留),再到E(停留),最后从E经过C(不停留)回到出发点A。
14、 按照这个方案,可以写出关系式: (AF:FB)*(BD:DC)*(CE:EA)=1。
15、 现在,您知道应该怎样写“梅涅劳斯定理”的公式了吧。
16、 从A点出发的旅游方案还有: 方案 ② ——可以简记为:A→B→F→D→E→C→A,由此可写出以下公式: (AB:BF)*(FD:DE)*(EC:CA)=1。
17、从A出发还可以向“C”方向走,于是有: 方案 ③ —— A→C→E→D→F→B→A,由此可写出公式: (AC:CE)*(ED:DF)*(FB:BA)=1。
18、 从A出发还有最后一个方案: 方案 ④ —— A→E→C→D→B→F→A,由此写出公式: (AE:EC)*(CD:DB)*(BF:FA)=1。
19、 我们的直升机还可以选择在B、C、D、E、F任一点降落,因此就有了图中的另外一些公式。
20、 值得注意的是,有些公式中包含了四项因式,而不是“梅涅劳斯定理”中的三项。
21、当直升机降落在B点时,就会有四项因式。
22、而在C点和F点,既会有三项的公式,也会有四项的公式。
23、公式为四项时,有的景点会游览了两次。
24、 不知道梅涅劳斯当年是否也是这样想的,只是列出了一两个典型的公式给我们看看。
25、 现在是否可以说,我们对梅涅劳斯定理有了更深刻的了解呢。
26、那些复杂的相除相乘的关系式,不会再写错或是记不住吧。
本文到此讲解完毕了,希望对大家有帮助。